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Figure 1: Overview of Project, Block-Level Diagram

1 Design Requirements
In this project, we designed a pipelined RISC-V CPU that can carry out a fully-featured set of RISC-V
instructions and has broad memory-mapped I/O functionality. The memory-mapped peripherals
part of the Pynq-Z1 FPGA board and allowed us to implement a functional audio synthesizer that
the user could interact with. A block-level layout of the project can be seen in fig. 1. Since perfor-
mance of the processor is key, our objective was initially to meet a processor CPI

(
cycles

instructions

)
ratio

of 1.2, and we were ultimately tasked with minimizing the Iron Law, as in eq. (1). We were given
an intensive reference workload to run (a defined, ”untouchable” mmult.c matrix multiplication
program), so only the latter two terms of this expression were within our control to optimize.

Time
Program

=
Instructions

Program
· Cycles

Instruction
· Time

Cycle
(1)

1.1 Three-Stage Pipeline

One of the key initial design decisions we had to make was the placement of the pipelining registers,
which would be the primary factor determining how difficult it would be to account for data and
control hazards. This decision also impacts our critical path lengths, ability to debug the processor,
and flexibility to restructure the datapath or incorporate additional modules. The structure we chose
is outlined in fig. 2 and our motivation is described in section 2.1.

1.2 Memory Architecture

There are 4 memories involved in the project, outlined below:

1. BIOS Read-Only Memory (ROM): User programs are uploaded over a UART interface into the
BIOS ROM, and this defines the program that the FPGA runs upon startup.

2. Instruction Memory (IMEM): Contains instructions for currently loaded program.

3. Data Memory (DMEM): Same memory instance as IMEM, with separated ports for clarity.
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4. MMIO: See below, or section 2.2.3, for details.

1.3 Memory-Mapped I/O

The upload of programs from a laptop to the FPGA board happened over a memory-mapped UART
interface, and we also mapped LEDs, buttons, switches, a PWM controller, and subtractive audio syn-
thesizer to the board. These allowed the user to interact with the uploaded program directly through
the hardware on the board, and the synthesizer itself could play notes of various pitches (set by a
frequency-control-word, which was mapped to letters of the keyboard). The audio was generated
by custom-weighting different fundamental waveforms (sine, square, triangle, and sawtooth). The
synthesizer directly sent the audio data to the FPGA audio output, allowing the user to play tones
directly from the board over UART.

2 High-level Organization
When designing a large system, such as our RISC-V CPU with integrated I/O, it is important to main-
tain functional organization, abstraction, and hierarchy. To do so, we began the design phase with
a detailed block diagram. After several iterations on the diagram, we moved toward implementing
our design in Verilog. This phase required high-levels of precision and abstraction so as to maintain
an understandable code base that would be easy to both modify and debug.

2.1 Block Diagram

A functional block diagram of our three stage RISC-V pipeline is shown in fig. 2. Though the dia-
gram labels four stages, the write-back (WB) stage occurs in parallel with the instruction fetch (IF)
stage, making it a three-stage pipeline. Key elements of the design are the synchronous-read and
-write memories that effectively act like pipeline registers. On the other hand, the register file is
synchronous-write and asynchronous-read.

A fundamental component of our design approach was to analyze and iterate on the block dia-
gram extremely thoroughly. With a three-stage pipeline, data and control hazards become a dominant
concern, so even after getting checked off for the block diagram design, we spent another week to
analyze the forwarding paths and control hazards. In doing so, we set up the following forwarding
paths: write-back result forwarded to the input of the execute stage; write-back result forwarded to
the output of the instruction decode stage; ALU result forwarded to the output of the instruction de-
code stage; and immediate and register outputs forwarded to the instruction fetch stage. The last of
the forwarding paths alleviates control hazards for jump instructions. In addition to these forward-
ing paths the control logic must handle branch control hazards by injecting a NOP on a failed branch
prediction.

It was also useful to analyze the critical path. Without forwarding, this is simply proportional to
the stage that takes the longest to compute. However, with our extensive forwarding this path could
potentially be longer. After analysis of the timing summary and the physical hardware design in
Vivado, we concluded the following critical path: output of memory forwarded to the execute stage;
ALU result forwarded to the output of the register file; the first register forwarded for use in JALR
address forwarding in the instruction fetch stage; and finally that address is used to calculate the new
program counter.

While extensive and time consuming, enumerating the possible forwarding paths and hazards,
in addition to simply spending more time with the functional block diagram, led to a deeper under-
standing of the design and a much smoother implementation experience.
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Figure 2: Three stage RISC-V Processor Design, including modules, forwarding logic, wiring, muti-
plexers, control logic signals, and pipeline registers.
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2.2 Module Hierarchy

In addition to maintaining a detailed functional block diagram, module abstraction and hierarchy
was an essential element of our design. Utilizing modules allows for sub-block functional testing to
verify correct performance in a piecemeal fashion, and also maintains abstraction barriers that make
integration easier to implement. Furthermore, module-based design allows for hierarchical reuse of
functions through multiple instances.

2.2.1 RISC-V Modules

In our RISC-V processor there are several key building blocks that were necessary to create and test
individually. Within the instruction decode stage we implemented dedicated building blocks for
the immediate generator, register file, and branch predictor. The arithmetic logic unit and branch
comparator reside in the execute stage, performing the key operations relevant for evaluation. The
load extend module in the write-back stage sign-extends outputs from memory to be written back
to registers. For each building block we created a dedicated test bench to verify functionality prior
to integration into the total processor. In addition to these specified functions we designed 2-to-1,
4-to-1, and 8-to-1 multiplexers to implement the logic utilized throughout the block diagram in fig. 2.

2.2.2 Control Logic

Another key design decision was the control logic organization. We created a dedicated control logic
module so as to maintain organization of the intricate pipelined control signals and how they are
driven while abstracting them away from the rest of the processor implementation. When imple-
menting the control logic, we focused on three design principles: separating control signals based
on the stage they belonged to; using combinational case statements to drive signals based on the in-
struction; and utilizing numerous local parameters for driving signals. Through these principles, we
were able to maintain logical flow and separation throughout the control logic in a readable format.
For details on the inputs and outputs of our control logic (inputs in red, outputs in blue, bit-widths
in green), see the bottom block in fig. 2.

2.2.3 Memory-Mapped I/O

Similar to the control logic, we decided to isolate the memory-mapped input and output from the
core processor module. The memory-mapped I/O modules contain the interface for all memory-
mapped addresses, including, but not limited to, LEDs, buttons, PWM audio, and our subtractive
synthesizer. As with the control logic, we heavily utilized local parameters to define address and
control words. Additionally, we separated out the write and read addresses functionally within the
module. Since there are many I/O functionalities, from GPIO to UART, dedicating an abstraction
barrier for I/O proved fruitful for our design.

3 Key Sub-blocks and Unique Design Choices
As mentioned in section 2.2, designing sub-blocks were an essential part of decomposing our com-
plex design. While many of the sub-blocks and design choices are more or less standardized, there
were several unique approaches we took in our design.

3.1 FIFO

A first-in-first-out (FIFO) buffer was an essential building block for our design. In this buffer the first
data written is also the first data read, maintaining the ordering of data across writes and reads. On
either side (read or write) of the FIFO there are three fundamental signals: data, enable, and status.
The data signal is the data to be written as an input or the data to be read as an output. In order to
control the FIFO, there are write- and read-enable signals where FIFO data is only written when the
write-enable is high and FIFO data output is only valid when the read-enable signal is high. Finally,
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Figure 3: (a) Clock domain crossing functional diagram. (b) Clock domain crossing four-phase signal
timing.

the status signal indicates whether the FIFO is full or empty, relevant to the write and read operations
respectively.

Our FIFO design operates as a cyclic buffer, where two pointers define the valid space of memory
within the FIFO. Every time data is written to the FIFO the write pointer location increases by one,
and similarly on every read the read pointer location increases by one. With this methodology, when
the read and write pointers have the same address, the FIFO is either full or empty. By adding an
extra bit to the pointer address we can take advantage of parity and overflow to determine whether
the FIFO is full or empty. When the full pointer addresses are equal, the FIFO is empty. However,
when the pointer addresses are equal in every bit except the MSB, then one pointer has completely
wrapped around the other, and the FIFO is therefore full. This design takes advantage of overflow in
the addresses to determine the true relative location of the addresses.

We utilized the FIFO buffer described above in two instances of our design. First, we used the
FIFO for general purpose I/O. When buttons are pressed on the hardware it is not guaranteed that
the processor is ready to read that data input. Therefore, by using a FIFO for button presses, we can
delay that input until the processor is ready to read the data, at which point it will read from the FIFO
buffer. This technique allows stable and reliable use of transient I/O by our processor.

Secondly, we used a FIFO for our audio synthesizer. In order to produce synthesized digital
sounds, we needed a sequence of look-up-tables (LUTs) as described in section 3.3. However the
values from these LUTs are produced roughly at the rate of the clock frequency, and not at the desired
sample frequency. To reduce the rate of data transfer, we utilized a FIFO. Data produced by the series
of LUTs is written to the FIFO at the rate it is produced until the FIFO becomes full, at which point
the LUTs are given a disable signal to stop producing samples. At the same time, samples are read
from the FIFO at the well-controlled rate of the sampling frequency. In this way, the FIFO was able
to systematically and reliably slow down the rate of data production for our synthesizer.

3.2 Clock Domain Crossing

In our design, we utilized two clock domains; one for the core processor and another for the audio
synthesizer and pulse width modulation. This was essential for synthesizing sounds at an appro-
priate resolution; however, it poses control problems for data transfer between the clock domains.
To alleviate this issue, we implemented a four-phase handshake to transfer data across the clock
domains.

A functional diagram of the clock-domain-crossing (CDC) circuit and a signal timing is shown in
fig. 3. When the processor in the first clock domain desires to send a signal to the second domain, it
sets the data to be sent in a register that is kept constant for the duration of the transfer. A request for
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transmit is then set high. Both actions occur in the first clock domain. After two rising edge clock cy-
cles in the second clock domain, the request transmit becomes a request receive that enables the data
to be stored in the second clock domain. This same signal propagates back as an acknowledge receive
through another two clock cycle synchronization through the first clock domain. At the output of this
synchronization the signal is considered an acknowledge transmit, as which point the processor has
permission to begin transmitting more data.

3.3 Audio Synthesizer

A core part of the integrated I/O was our audio subtractive synthesizer. Building a fully integrated
subtractive synthesizer required several key components, including a PWM-based digital-to-analog
converter (DAC), a numerically controlled oscillator (NCO), and the hardware to synchronize all the
components together.

3.3.1 NCO

At its core, an NCO is a systematic LUT. In order to create arbitrary waveforms we have LUTs with the
values of the waveforms for a given input. The NCO manages how to apply inputs to the LUTs so as
to get the appropriate waveform at a given signal frequency. To do so we have a phase accumulator,
which increments an index linearly according to a particular signal frequency.

This index is then used as an input to the LUT to produce samples for a particular sampling
frequency at a continuous rate. Since samples are produced continuously (at the clock frequency),
it was important to design an enable interface that could be used to halt the NCO from producing
samples (as described at the tail-end of section 3.1).

To achieve high precision in a LUT requires many data points and immense storage. In order
to reduce the size of our LUTs, we incorporated linear interpolation of values between indices. The
approach we took to linear interpolation was elegant and computationally simple, which is important
given LUT-indexing frequency. We simply treated the interpolation bits as a weight in the interval
[0, 1), and computed a weighted average of the surrounding 2 index values from the LUTs. Once
the weight was computed once, it could be used in all 4 waveforms (referenced 8 times in total) Our
approach to interpolation allowed low memory usage in the LUTs while maintaining the fidelity of
the signal.

3.3.2 Synth

Our subtractive synthesizer is made of several building blocks. Samples are produced for a given
frequency by the NCO for all four designed waveforms: sine, triangle, sawtooth, and square. These
waveforms then receive their own gain factor (equivalent to a right shift) before they are summed up
and multiplied by a global gain factor (again a right shift).

The data produced by the NCO is both signed and 20 bits wide, but our PWM-based DAC takes
in 12 bit unsigned values. Therefore, we truncate the data by taking only the 12 MSBs and adding
211 to ensure the result is always positive. After that processing, samples are fed to a FIFO buffer, as
described in section 3.1, followed by a CDC, as described in section 3.2. Finally, the resulting data is
fed, in the PWM clock domain, to the PWM-based DAC for audio output.

3.4 NOP Injection

Another unique design choice was our approach to NOP injection. For branch instruction control haz-
ards, if the branch prediction is incorrect then it is necessary to inject a NOP to correct the instruction
flow. To do so, we utilized unused opcodes from the RISC-V specification manual. In particular, we
designated an opcode for NOP instructions (‘OPC NOP), which would only be used by a failed branch
prediction. This allowed us to easily modify the control logic for a NOP and correct the datapath
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Figure 4: Two bit saturating counter state machine.

Figure 5: Wall clock time as a function of branch prediction saturating counter bit width.

based on assumptions that the NOP was set by a failed branch.

3.5 Extra Credit: Saturating Counter Branch Prediction

In pipelined processors, branch prediction is essential for increasing the cycles per instruction (CPI),
and in turn the speed of the processor. Without branch prediction, the only way to resolve control
hazards is by injecting NOP instructions when the control flow is unknown. However, this is very
costly. In our first iteration of design, we implemented this method and achieved a very poor CPI. As
a next improvement, we moved towards an always-taken prediction scheme. While this improved
the CPI significantly, that was only for the mmult.c program. To further increase the prediction
ability of our processor we moved towards a true branch prediction scheme, the saturating counter.

A saturating counter branch predictor works as shown in fig. 4. In this scheme the branch is
predicted ’take’ for the larger half of the values, and ’not take’ for the smaller half of the values. Every
time a branch is taken, the counter increments, whereas when the branch is not taken, it decrements.
In this way the counter utilizes the history of previous branch instructions to predict the outcome
of future branch instructions. Parameterizing the bit width of the counter modulates the impact of
branches from long ago, and was tuned based on the reference workload.

The impact of branch prediction on our wall-clock time for the mmult.c program is shown in
fig. 5. As shown, the optimal bit width for our saturating counter was 4. With larger bit widths the
impact of history is too large and prevents accurate prediction, whereas with smaller bit widths the
results are very noisy as they depend more on the given workload.
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4 Status and Results
4.1 Functional Summary of Blocks

By the end of this project, we completed our implementations of a three-stage pipelined RISC-V
processor that successfully runs the mmult.c program with the correct checksum. We also fully
memory-mapped and integrated all functional blocks into our core CPU design, with the ability to
demonstrate all programs’ functionality in hardware. Our audio synthesizer is fully integrated and
functional, and all of our various programs and blocks run at the same clock frequency.

4.2 Clock Frequency and Planned Improvements

Our processor operates at a maximum frequency of 50MHz (minimum clock period of 20ns).

If we continued working on this project, we would divide our critical path (outlined in section 2.1)
into several substages. Currently, our critical path is caused by our ambitious forwarding, in which
it is possible to exercise nearly the entire datapath in a single cycle if the hazards propagate across
several instructions. Our post-route timing summary indicates that this path is the longest one by far,
and we are approximately 0.132ns away from reaching 60MHz. This result is especially unfortunate
since the reference workload likely does not even exercise the forwarding for this specific case.

Our solution to this performance pitfall is to forcibly insert NOP’s whenever the data that can be
forwarded has already been forwarded. That is, even though we have the wiring in place to enable
comprehensive, CPI-reducing forwarding, when excessive forwarding is occurring, it is performance-
wise beneficial to reduce our CPI and insert a NOP to enable much greater clock frequency. By incor-
porating the division of the critical path in this way, and having analyzed the other lengthy paths in
our design, we anticipate that our critical path will be divided into roughly 3 equal sections, which
would enable our clock frequency to meet 100MHz or greater at ideally minimal increase in CPI since
the critical paths are likely not exercised by mmult.c.

4.3 LUTs and SLICE register counts

The LUT and SLICE usage of our FPGA is outlined in section 4.3. This data was collected after
the completion of the entire project. Unfortunately, due to timing constraints and a focus on core
performance and functionality, we were unable to optimize the hardware usage.

Site Type Used Fixed Available Util %

Slice LUTs 5455 0 53200 10.25 %

Slice Registers 8049 0 106400 7.56 %

Table 1: FPGA Hardware Utilization

4.4 CPI and mmult Performance

Our processor operates with a CPI of 1.124 enabled by our tuned branch-prediction scheme (without
which we operate at over 1.3 CPI due to the branching/jumping nature of the mmult.c program
semantics). Our ”walltime” for the program is approximately 0.284s.

4.5 Verification Approach and Summary

At every step of the project, we wrote an extensive number of unit tests, block-level testbenches, and
integration-style system-level testbenches to ensure ease of debugging and for performance verifi-
cation. We went beyond the provided testbench structures and generated our own to ensure full
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coverage.

4.5.1 RISC-V and Processor Testing

In the early stages of our RISC-V processor, we wrote block-level testbenches for all core components
of the pipeline, most notably for the ALU, Branch Comparator, Load Extender, Immediate Generator,
Regfile, and others. This allowed us to have more confidence in our work and pointed at locations to
debug when needed.

In order to make sure our processor worked for all instruction-ordering cases, we began by writ-
ing a comprehensive set of unit-tests for each instruction to exercise all functional options in the
datapath. Once we graduated beyond unit-testing to running more integrated programs, we wrote
a fully-featured pseudo-randomized assembly code generator in Python. The goal was to emulate
an industrial-strength verification tool (exercising maximum functional coverage and code coverage)
with a narrowly defined scope for this particular project. The script incorporated all categories of
instructions, where we could set the relative frequencies of each instruction to tune the workload
and lean towards a particular set of edge cases in a given trial run. This also allowed us to use
fewer ”simple” instructions, such as slt, sltu and more ”complex” instructions, such as xor,
jalr, etc. We could toggle the encouragement of data and control hazards, customize the number
of instructions, and format expected register results. Each instruction was given a label for ease of
specifying jumps, and the issue of infinite-looping was resolved by restricting jumps to a predefined,
well-behaved range.

In the end, the assembly program was written to a text file where the expected register values
could be computed using Venus for smaller programs, or the RISC-V compiler itself for larger pro-
grams (≈ 10,000 instructions). The generation of this script saved us time in isolating several niche
bugs and in later stages of the project, we never had to doubt our processor functionality. Espe-
cially when optimizing the datapath for clock frequency at the end of the project timeline, this script
proved immensely useful for regression-testing, as the provided isa-tests did not seem to com-
prehensively test hazards and corner cases.

4.5.2 Audio Synthesizer Testing

For the second major stage of the project, we wrote testbenches to ensure functionality of the Phase
Accumulator, NCO, and Synth individually and in concert. These testbenches verified our hardware
observations with the benefit of being able to inspect waveforms at a very refined data resolution, to
catch errors that might not be discernible in hardware. We also discovered how to use DVE in much
more powerful ways than before, including being able to search a set of waveforms for a specific
condition (which is near-impossible to do in a 10ms simulation by eye).

We ran the provided NCO.py and Synth.py scripts to compare against our waveform for a wide
variety of harmonic combinations (different weightings of various waveform types) and frequency
control words. We found that our waveforms matched the predicted values in every case, lending
credence to our approach and providing functional verification of our code. Not only did the golden
values and other specific numbers match between the script and waveform, but the analog version
of the output waves matched the expected shape, and became even better after incorporating linear
interpolation, as shown in fig. 6. We also performed an audio match between our FPGA board’s
output sound and some online references for various waveform shapes.
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(a) Sine Wave

(b) Triangle Wave

(c) Sawtooth Wave

(d) Square Wave

Figure 6: Verified analog waveforms produced by the subtractive synthesizer with linear interpola-
tion.

5 Conclusions (both)
5.1 Reflections

Overall, our project was definitely successful. We spent more time than many other groups on our
actual block diagram, but the familiarity we gained with the processor design, the layout of various
modules, and the semantics of pipelining enabled us to successfully complete the processor check-
point comfortably within the time limit.

When it came time for checkpoint three, however, we were not as on top of the time-table, with
finalized implementation of the audio synthesizer happening the night before check-off. This is par-
tially attributable to the lack of clarity in the project specification, particularly as compared to check-
point two. In checkpoint two, the detail in the specification was outstanding and made implementa-
tion a matter of reading the specification and figuring out how that mapped to our design. However,
in checkpoint three, at times the design was confusing. This was particularly the case with the fre-
quency control word, which, barring two mentions in the spec, was never properly defined and led
to significant (two full days worth) confusion. The provided C program also had a bug that took
us time to figure out, and we ended up doubting our design (which was correct all along). Both of
these issues were resolved in late-week office hours. As a result we were unable to spend the amount
of time on optimization as we would have liked to, specifically with regards to increasing our clock
frequency.

We also learned the importance of systematic functional verification to ensure the behavior of our
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modules. By creating many unit-tests, block-level tests, and integration tests along the way, the usage
of which took significantly more time than we spent on the actual code, we had complete confidence
in our processor’s correctness in later stages of the project.

5.2 Insights for Next Time

If we were to do this project over again, we wouldn’t change anything about our fundamental ap-
proach to the project; however, we would incorporate considerations about clock speed into our
initial processor and forwarding-logic design so that we don’t unintentionally create a very lengthy
critical path. Additionally, we would plan our work schedule around the office hours of the TAs;
this would allow us to get our questions clarified more quickly as they come up. For checkpoint 3,
we would have started the checkpoint earlier, though the timeline of other class projects made this
difficult.

Overall, we were able to complete all the primary functional aspects of the project, and the feel-
ing of seeing the audio synthesizer and the processor work was unparalleled. The incorporation of
practical hardware-based memory-mapped I/O peripherals was tangible and quite satisfying.

6 Division of Labor
Documents have been submitted separately.
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