160 µW, High-Slew Smartwatch LCD Driver EE 140 Final Project Presentation

Neelesh Ramachandran

UC Berkeley EECS Department

December 9th, 2020

UC Berkeley

160 µW LCD Driver

Summary

1 Intro

2 Motivation for Topologies Chosen

- Diagram
- Stages
- Compensation
- 3 Design Methodology, Features, and Insights
 - Stage 1
 - Stage 2
- 4 Performance Verification
 - Stability (PSRR, CMRR, Phase Margin)
 - Transient (Settling Times, Power)
 - FOM
- 5 Changes Made Since Report (\uparrow FOM, \downarrow power)
- 6 Future Ideas

Introduction

Intro

Comparison with Target Specifications

Property	Specification	Achieved
Power Supplies	≤ 1.8 V, GND	1.8V, 1.62V, GND
Closed Loop DC Gain	2	2
Load	800Ω, 30pF	same
Max. Settling Time	180.22ns	178.57ns
Total Error	0.2%	0.013%
Power Consumption	$\leq 750 \mu W$	159.24µW
Output Voltage Swing	≥ 1.4	≥ 1.4
Max. Mirror Ratio	20	18
Max. Added Capacitance	25pF	75fF
CMRR at DC	$\geq 60 dB$	87.03dB
PSRR at DC	$\geq 50 \mathrm{dB}$	59.498dB
Phase Margin	$\geq 45^{\circ}$	56.16°
FOM	≥ 7.403	35.17

Motivation for Choosing Topologies

Diagram of Circuit (values have since changed)

UC Berkeley

160 µW LCD Driver

Stage 1 Considerations

- **1** High Gain; meet static error and allow greater proportion of 0.2% to go to dynamic, transient error.
- 2 Slew Rate: current drives a small capacitance (compensation) and stage has a somewhat small output swing (second stage applies gain to signal).
- 3 Standard Differential Amplifier doesn't provide enough gain; *need to cascode* ⇒ telescopic cascode is a valid option.

Stage 2 Considerations

- **1** Large Output swing; ensure $V_{ds,sat}$ of devices isn't greater than 200mV.
- **2** Slew Rate; Driving large (30pF) load (and also smaller compensation capacitor); need enough current to do so.
- **3** gain isn't as significant (if first stage is designed well).

Compensation

- **1 Transient**: with more compensation (higher *C*, higher *R*), generally, stage 1 performs worse but stage 2 performs better (but can tune to benefit both!). Amount of compensation determined by which stage is failing the settling time.
- **2 Phase Margin**: miller *RC* compensation (which I used) can improve phase margin and increase unity-gain frequency (bandwidth).

Design Approach and Techniques

Stage 1: Sizing Devices

- **1** Extensive Matlab $\frac{g_m}{I_D}$ analysis to find the point of maximizing gain per unit current.
- 2 System-level analysis yielded range of viable/optimal g_{m1}, r_{o1} values to aim for. Initially, I constrained myself to precise values; later, relaxed constraints to form bias \pm threshold.
- 3 Higher values of $\frac{g_m}{I_D}$ selected (but not so high that J_D drops precipitously, requiring very large W).

Stage 1: Biasing

- Used current mirror network with low current (2μA) to set up DC node voltages for NMOS/PMOS sides of cascode. Inspired by homework problem.
- 2 Matlab look_up function for a given set of device parameters is more accurate with raw V_{GS}, V_{DS} values than for arbitrary cross-ratios (such as $\frac{g_{ds}}{I_D}$ given a specific $\frac{g_m}{I_D}$).
- 3 Alter bias voltages as needed to make g_{ds} as similar as possible in a given cascode stack (8µS, 8µS better than 11µS, 5µS).

Stage 1: Impacts of Variables

- **1** Higher length leads to minimal change in power consumption, large increase in gain, and slower settling response.
 - But, can tune to ideal state where improvement in static error outweighs generally slower settling response (for me, 480nm).
- **2** Input common-mode voltage: minimum; large enough to keep devices in saturation, optimal; make g_{ds} of input devices collectively low.
- 3 Use widths to control $V_{ds, sat}$ (pick devices where g_m value matters less, like top stage 1 PMOS devices).

Stage 2: Sizing Devices

- Matlab analysis yet again (started with class A common source, which was very similar to labs).
- 2 Matlab "optimal" sizes would often lead to output bias voltage $\neq 900$ mV; needed to tune widths in Cadence. Sometimes had to compromise; tuning PMOS \implies different $g_{m,p}$ than planned. tuning NMOS \implies different bias current than planned (for class A).

Stage 2: Current/Length Selection

- **1** Selected length based on system-level estimate for f_U (larger lengths may violate unity-gain frequency requirement). Higher lengths led to higher gain.
- 2 Class A Common Source output stage: $g_{m,n}$ doesn't impact performance much (NMOS is there to set a branch bias current). Class AB stage: $g_{m,eff} = g_{m,n} + g_{m,p}$ (two signal paths) so both devices matter.
- **3** Wider devices consume more power (more current). Want minimally sized widths that provide enough current to settle within 180ns.

Stage 2: Why a Source-Follower?

- 1 Effective DC level-shifter
- 2 Simple to bias and integrate into a class A common source approach (which I had before). Can bias with generally low current ($\leq 3\mu$ A), and use relative widths to set V_{GS} of NMOS device.
- 3 Overcome slew-rate limit that makes class A very power-hungry + take advantage of increased $g_{m,eff}$.

Compensation

- Matlab can't predict slew-rate limitations; led to more reliance on Cadence testing and parameterized sweeps.
- 2 For a given design, once the DC bias points were tuned, then I honed in on the optimal compensation with 3-4 parametric analyses on C_C, R_C .
- 3 These had minimal impact on power ($\leq 1\mu$ W), didn't change bias points (compensation tuning done last for any given design).
 - In later stages of project, testing the response of a candidate design at a few compensation levels would indicate quickly if the approach was worth pursuing or not (to meet setting time).

Some Other Thoughts

- Optimizing for power is far more rewarding (FOM-wise) than optimizing for settling time. My Matlab analysis indicated that approximate optimal settling time is 85 – 90ns, only half of 180ns (and requires massive power).
- 2 Matlab matches Cadence only to an extent (especially transient response).

Performance Verification

Plot of Values

ADE Output (Confirmation of Plot Values)

Outputs				
	Name/Signal/Expr	Value	Plot	
1	cm_gain	wave	V	
2	dm_gain	wave	V	
3	CMRR	87.0356	×	
4	CMRR_freq	wave	×	
5	ps_gain	wave	×	
6	PSRR_freq	wave	V	
7	PSRR	59.4983	×	
8	Phase Margin	56.1613	×	
9	Phase Margin Frequency	31.1979M	>	
10	Loop Gain Phase	wave	×	
11	Loop Gain dB20	wave	V	
12	Output Bias Voltage	900m	×	
13	19/Vmid			
14	19/Vup			

Plot of Response (350mV)

Analyzing Step Response (350mV)

- 1 Overshoot in $L \to H$ is result of too much compensation (but it's needed for $H \to L$.
- 2 Linear decrease in $H \rightarrow L$ can be improved with more compensation (evidently, competing with other transition).

ADE Output (Confirmation of Power, Output Swing)

Outputs					
	Name/Signal/Expr	Value	Plot		
1	vreset				
2	vout_low2high	1.40119			
3	vout_low_180n	201.288m			
4	vout_low	200.11m			
5	vout_load	wave			
6	vout_int				
7	vout_high2low	1.39863			
8	vout_high_180n	1.6013			
9	vout_high	1.59992			
10	vout				
11	vin_n				
12	vin	wave			
13	settling_error_low2high	-84.7324m	V		
14	settling_error_high2low	97.7218m	V		
15	iavg_1	-26.7447u	V		
16	power_1	-43.3265u	V		
17	iavg_1p8	-64.3957u	V		
18	power_1p8	-115.912u	V		

UC Berkeley

160 µW LCD Driver

Plot of Response (5mV)

FOM

Figure of Merit Calculation

$$FOM = \frac{10^{-9}}{t_{\text{settle}} \cdot P_{\text{tot}}} \\ = \frac{10^{-9}}{178.57 \text{ns} \cdot 159.24 \mu \text{W}} \\ = 35.167$$

UC Berkeley

Full Changelog (important ones bolded)

Result of Changes (made since submission of report): FOM increased from 26.09 to 35.17.

- **1** Decrease Stage 1 Current (less power)
- Increase Stage 1 lengths (higher gain, lower static error allowed higher dynamic error)
- 3 Tune bias voltages using mirror-network parameters.
- **4 Decrease stage 2 length** (increase power consumption but improve transient response)
- 5 Decrease compensation to account for other changes.

Possible Points of Optimization

- Individualized NMOS input vs NMOS vs PMOS Stage 1 lengths (mostly same now).
- 2 Replace compensation resistor with triode transistor (for area + PVT matching).
- **3** Improved class AB implementation (current injector? IEEE Hogervorst paper? Mehta's Improved Hogervorst design from JSSC '19?)
- 4 Explore cascode compensation
- 5 Decrease bias currents more.

Acknowledgments

I am very thankful for the instruction of Professor Muller and the GSIs throughout the semester which allowed me to complete the project and learn a lot from it.

And of course, a big thank you to Apple for sponsoring this project!

The End! Questions?